「机器学习-李宏毅」:Tips for Deep Learning

这篇文章中,详尽阐述了在训练Deep Neural Network时,改善performance的一些tips。
tips从Training和Testing两个方面展开。
在Training中结果不尽人意时,可以采取更换新的activation function(如ReLu,Maxout等)和采用Adaptive Learning Rate的GradientDescent算法(除了Adagrad,还有RMSprop、Momentum、Adam等)。
当在Training中得到好的performance,但在testing中perform bad时,即遇到了overfitting,又该怎么处理呢?文章后半部分详尽介绍了EarlyStopping、Regularization和Dropout三个solution。